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Magnetization Concavity in Ferromagnets 
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We investigate the conjecture that in Ising ferromagnets, single-site magnetiza- 
tion (ax) is a jointly concave function of the magnetic field variables. We 
present partial results favoring the conjecture, including a numerical survey, 
although we do not prove it in full generality. We also point out some 
implications of concavity. 
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1. INTRODUCTION 

In a finite classical spin-1/2 Ising ferromagnet with pair interactions, ~6) we 
study the dependence on magnetic field variables of the single-site magne- 
tization m x =  (ax) and total magnetization M = ~x(O~). Specifically, we 
investigate the concavity of the magnetizations m x and M as functions of h. 
(Here we have assembled the field variables hy into a vector h.) It follows 
from the G.H.S. inequality ~4) that rn~ has a restricted type of concavity in 
the ferromagnetic orthant (h >1 0}: it is concave along any line whose 
direction vector has nonnegative components. Our purpose in this paper is 
to analyze the conjecture that rn~ is (jointly) concave in {h/> 0), without 
restriction: 

Conjecture 1. In a finite classical spin- l /2  Ising ferromagnet with 
arbitrary pair interactions, any single-site magnetization m x = (ax) is a 
jointly concave function of the magnetic field variables h throughout the 
ferromagnetic orthant (h >~ 0). 
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This conjecture may be restated as negative semidefiniteness of the 
Hessian matrix O2mx/ahyOhz, whose entries are third-order Ursell functions 
u3(a x, oy, az). Alternately, since 

t / Ecyczu3(~ , 9  ,Oz)= ~ 9 9  - cyo, (1) 
y , z  

another equivalent version of the conjecture is that the variance of any 
linear combination ~ycyoy of the spins decreases in the field variables h x. 
This is a quantitative expression of the idea that increasing the fields drives 
the spins toward + 1. A natural weakening of the conjecture replaces 
single-site magnetization m x by total magnetization M. 

We are unable to prove Conjecture 1 in full generality. This paper is 
devoted to partial results establishing it in many special cases. In Section 2 
we demonstrate some form of concavity for simple examples: two-site 
models, mean-field models, and one-dimensional nearest-neighbor models. 
In Section 3 we summarize the results of a numerical study, which supports 
Conjecture 1. We conclude in Section 4 with a few implications of the 
conjecture. An Appendix contains some sample numerical data, and several 
formulas invoked in Section 2. 

We use the common notation ( f }  for the thermal average of an 
observable f (see Ref. 6) and take inverse temperature fl = 1. 

2, CONCAVITY IN SIMPLE MODELS 

In this section we examine two-site, mean-field, and one-dimensional 
Ising ferromagnets by means of inequalities and explicit calculations. To 
obtain tractable formulas for the thermal averages in mean-field and 
one-dimensional ferromagnets, we require translation invariance. 

The site-0 magnetization Hessian fyz = 32(~ of a two-site 
model (sites labeled 0, 1) is a 2 • 2 symmetric matrix with negative entries 
(G.H.S. inequality). It will be negative definite if its determinant is positive. 
Computing, 

de t ( f )  = 4(Oo}((aoOl} - (o0}(ol>)((ol} - (ao}(OoOt}) (2) 

which is positive by the Griffiths inequalities. (3) Note that since more sites 
can be added without changing this computation, it follows in ferromagnets 
of arbitrary size that rn x is concave when restricted to the two-dimensional 
quadrants (h x >1 O, hy >1 0; all other hz fixed}. 

The translation-invariant mean-field Hamiltonian with N sites (labeled 
from 0) is 

J Eo o + hEo , J,h>O (3) 
y , z  y 
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The negated Hessian - F y .  = -O2M/Ohgh  ~ of the total magnetization has 
only two distinct entries: 

D = -Fyy = 2(00)(1 - N(oo) 2 + I N -  1](ZOO,) ), 0 < y < N -  1 

(4) 
E = - F y  z = D - (N - 2)((OOO,O2> - < O o ) < O O O l )  ) - 2(Oo>(1 - (oOOl>), 

(s) 

Since 

- ~_~CyCzFy~= E cy + ( D  - E ) ~ , ( c y )  2 (6) 
y,z y 

and D > E > 0 by the G.H.S. and Griffiths inequalities, the Hessian F of 
total magnetization is negative definite. Local joint concavity of M in h (for 
h approximately uniform) now follows trivially by continuity. 

The negated Hessian -fyz = -~2(Oo)/~hy~h ~ of the site-0 magnetiza- 
tion of the mean-field model (3) has three distinct entries: 

u = -foo = 2(Oo)(1 - (Oo> 2) (7) 

v = -foy = -fyy = 2(Oo)((OoO,> - <00>2), 0 =)d=y (8) 

W = - - f y z  = /.9 - -  ( < O O O I O 2 >  - -  < O 0 ) < O ' 0 O I > ) ,  O, y , z  distinct (9) 

Since u > v > w > 0 by the G.H.S. and Griffiths inequalities, the identity 

N-, )2 

N - 1  

+ (v - w) ( 2 )  2 
1 

(w v )(}lu 
(10) 

shows the inequality u w  > v 2, if true, would imply that f is negative 
definite. In terms of correl~ttions, the proposed inequality for mean-field 
models becomes 

- u 3 ( o o , O  1 ,%) > (%) (2 (%0 , )  2 - (o0)(o0o,o2) - (00)2(000,)) (11) 

We are unable to prove (11), which is a comparison of two positive 
quantities. However, a numerical check of (11) in a thousand mean-field 
models with 3 to 15 sites yields no counterexamples. Sample data appear in 
the Appendix. 

A by-product of this survey concerns mean-field bounds. (7) Although 
the magnetization (%;  N )  of an N-site model appears to increase mono- 
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tonically in N to its limiting and bounding self-consistent Value (00; oo), 
the two-pt~int function (o0al ; N )  for finite N may exceed its limiting value 
(o0ol; ~ ) .  Thus, a mean-field bound on the two-point function analogous 
to the known magnetization bound appears problematic. 

The translation-invariant one-dimensional nearest-neighbor Hamilto- 
nian with N sites (labeled from 0) is 

- H  = J ~ o p o y + l +  h ~ o y ,  J ,h  > 0 (12) 
Y Y 

The boundary condition is periodic: o N ~ o 0. All expectations in this model 
- - in  particular, the entries of the magnetization Hessian--can be conve- 
niently calculated by transfer-matrix methods. (6) 

The Hessian Fy z = 32M/~hyOhz of the total magnetization is a T6plitz 
matrix. It is therefore diagonalized by the finite Fourier transform, with 
eigenvalues 

h e=~xx o e ipx, P -  N 0 ~ < k <  N - 1  (13) 

The lowest eigenvalue )'0 is negative by the G.H.S. inequality. A somewhat 
lengthy calculation yields a formula for the other eigenvalues: 

he= - -ap{ (1- - r2N)(1  + 2r - -  2[1 + 2cp]r 2 + 2r 3 + r 4) 

- ( 1 -  2cer + r 2 ) ( 1 -  r2)2Nr N } (14) 

Here c e = cos(p), r lies in (0, 1) and is the ratio of smallest to largest 
eigenvalues in the transfer matrix, and a e > 0 is a positive factor given 
explicitly in the Appendix. The sign of he is thus controlled by the factor 
{. } in curly brackets, which we claim is positive for all cp ~ [ -  1, 1]. To 
show this, we underestimate the term (1 - r 2N) in (14) by the inequality 

1 - r 2n >/ N(1 - r2)r lv-I , 0 < r < 1 (15) 

whose proof we temporarily defer. [A simple worst-case analysis with 
e e = + 1 demonstrates that the term multiplying (1 - r 2N) is nonnegative.] 
Using (15) in (14) and performing some cancellations, we find 

he<,< - - a e U r N - l ( l  -- r2)3 , 0 < r < l  (16) 

Thus the Hessian is negative definite, and the total magnetization jointly 
concave, for approximately uniform fields h. 

It remains to establish (15). By convexity of the exponential function 
f ( x )  = r 2~, 

N-1 
E r2j>/ NrlV-I (17) 

j = 0  
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Since0< r <  1, 
N - 1  

(1 - r 2N) = (1 - r 2) ~ r2J>/ N(1 - r2)r N-I 
o 

as claimed. 

(18) 

3. NUMERICAL STUDY 

We studied Conjecture 1 numerically. The investigation had two parts: 
a broad survey of examples, and a purposeful search for a Counterexample. 

In the survey, we examined several thousand Ising ferromagnets cho- 
sen at random. The randomly selected parameters were the exponentiated 
fields and couplings exp(-2hy) and exp(-2Jyz), taken independently and 
uniformly from (0, 1). Site number N ranged from 3 to 10, inclusive. After a 
preliminary transformation to tridiagonal form, we applied the usual deter- 
minant criterion to test the site-0 magnetization Hessian fyz = O2rno/~hy~hz 
for definiteness. One must take some care to compute fyz accurately, as it 
can be a nearly singular matrix if fields or couplings become too large or 
too small. 

All examples in the survey were consonant with Conjecture 1; the 
site-0 magnetization Hessian fyz was negative definite in every instance. 
Sample data appear in the Appendix. 

We used a nonlinear optimization routine (~) to seek a counterexample 
actively. The routine altered fields hy and couplings Jyz so as to maximize 
the algebraically largest eigenvalue of the site-0 magnetization Hessian f. 
We considered ferromagnets with site number N between 3 and 6, inclu- 
sive. For each N, we randomly picked 50 sets of fields and couplings as 
starting points. 

We found no counterexamples to Conjecture 1. In each case, the 
optimization routine merely drove fields and couplings to the boundary of 
the ferromagnetic region, and the maximum eigenvalue of the Hessian to 0. 

4. IMPLICATIONS 

We summarize a few of the consequences Conjecture 1 would have, if 
true. To simplify the language, we write as if the conjecture had been 
proved. 

Conjecture 1 extends at once by Griffiths' "analog system" approxima- 
tion scheme (3) to ferromagnet models with certain other a priori spin 
distributions. Higher-spin models, models with uniform spin distribution, 
and lattice ~4 fields are examples of this type. 
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Another corollary of Conjecture 1 follows by differentiating the site-x 
magnetization Hessian f with respect to external field h w at h = 0. Since 
f(0) = 0, the resulting matrix f ' ,  with entries 

f ;z  = <Owa Oy z> - <a aw><Oy z> - - ( 1 9 )  

is negative semidefinite for any choice x and w. This matrix inequality 
holds for all h >/0 by the "ghost spin" method of Ref. 2. It may have 
implications for the triviality of the 02 field theory; see Ref. 5. 

In translation-invariant models, the reinterpretation (1) implies that the 
amplitudes <lEyayeipyl2> with p =/= 0 decrease in all external field variables 
(see Section 2 for notation). 

We conclude by applying Conjecture 1 to the problem of locating the 
extrema of single-site and total magnetization on the simplex of fixed total 
flux 

= E G ,  h> 0 (20) 
Y 

For any interaction, joint concavity ensures a global minimum at some 
vertex (all flux at a single site). If the pair interaction has sufficient 
geometric structure--typically, translation invariance--one can also iden- 
tify a global maximum of the total magnetization M(h). Specifically, let G 
be a (finite) group acting linearly on the ferromagnetic orthant (h >/0}, 
under which M is invariant. Assume that each simplex (20) is invariant 
under G, and that the uniform configurations (simplex centroids) 

hy = r  Vy (21) 

are the only fixed points of G. By averaging over G, joint concavity ensures 
a global maximum of M at the uniform configuration (21). For mean-field 
interactions, this maximum property may be proved independently of 
Conjecture 1. 
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APPENDIX 

We define the factor a e appearing in (14). We then present sample 
numerical data. 

Let ~+ > ~-_ > 0 be the eigenvalues and e+, e_ the corresponding unit 
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eigenvectors of the transfer matrix 

e J - h  

T =  \e  -s  

Let E be the spin matrix 

Define the matrix element u by 

(23) 

T u-- e+ 2 e +  (24) 

Then 0 < u < 1 for h,J > 0. The values of r and ap in (14) are 

r = ~'_/~'+ (25) 

2 u ( 1  - u 2) 

ctp = (1 + rN)2(1 -- 2cer + r2) z (26) 

Data from Mean-Field Survey 

Example 1. With J - - - -  0.2 and H = 0.2, we have the following table. 
Note that (%)  increases with N, but (O0Ol) and (o0ala2) do not. Data 
rounded to five digits. 

N (%} (oOOl} (006102)  u w  - I) 2 

3 0.22408 0.11452 0 .49308E-  1 0 . 1 3 7 0 5 E - 2  
4 0.22844 0.10182 0 .42662E-  1 0 .90374E-3  
5 0.23121 0 .93880E-1  0 .38138E-1  0 .63971E-3  
10 0.23715 0 .77213E-1  0 .27594E-  1 0 .19844E-3  
15 0.23927 0 .71410E-  1 0 .23549E-  1 0 . 9 5 2 2 8 E - 4  

Example 2. With J = 0.4, H = 1.0, we have the following table. Note 
that unlike Example 1, (a0), (O0Ol), and (a0ola2) all increase with N. Data 
rounded to five digits. 

N ( o 0 )  (OoOl)  ( o 0 o , o : )  uw - 1)2 

3 0.83760 0.71674 0.62187 0 . 1 3 0 3 1 E - 2  
4 0.84710 0.72758 0.63142 0 .60663E-  3 
5 0.85270 0.73445 0.63773 0 .33734E-3  
10 0.86359 0.74883 0.65173 0 . 5 9 6 7 0 E - 4  
15 0.86711 0.75377 0.65680 0 . 2 3 2 0 2 E - 4  
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Data from General Concavity Survey 

The Hamiltonian is defined by 

- H = E Jyzoxoy + E hyoy 
y > z  

Numerical values are rounded to five digits. 

E x a m p l e  3 .  

Number  of sites N: 
Magnetic fields hy : 
Couplings Jyz, Y > z: 

Site-0 magnetization (%) :  

5 
0.73785 0.46747 0.29512 0.44708 
1.8363 
1.6376 0.39675 
0.93374 0.067699 0.18538 
0.52510 0.76631 0.13675 0.42623 
0.98539 

Hessian fyz = 02(ao)/~hyOhz of site-0 magnetization: 

- 5 . 7 1 7 4 E - 2  - 5 . 5 9 0 6 E - 2  - 5 . 5 6 1 2 E - 2  - 4 . 9 1 6 8 E - 2  
- 5 . 5 9 0 6 E - 2  - 5 . 5 8 0 9 E - 2  - 5 . 4 5 2 7 E - 2  - 4 . 8 3 6 9 E - 2  
- 5 . 5 6 1 2 E - 2  - 5 . 4 5 2 7 E - 2  - 5 . 5 0 5 9 E - 2  - 4 . 8 0 2 5 E - 2  
- 4 . 9 1 6 8 E - 2  - 4 . 8 3 6 9 E - 2  - 4 . 8 0 2 5 E - 2  - 4 . 7 6 1 4 E - 2  
- 4 . 9 8 3 2 E - 2  - 4 . 9 4 9 1 E - 2  - 4 . 8 6 9 2 E - 2  - 4 . 4 5 2 5 E - 2  

Number of nonnegative eigenvalues of Hessian: 0. 

(27) 

0.615~ 

- 4.9832E 
- 4.9491E 
- 4.8692E 
- 4.4525 E 
- 4.9140E 
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